$$\large{\displaylines{\normalsize
\begin{array}{l|l}
1 & \det(\mathbf{E})=1\\ \\
2 & \displaystyle\det(\mathbf{A})=\prod_{i=1}^{n}a_{ii}\\ \\
3 & {\color{#ff7800}\mathbf{A}_{n\times n}}\quad\det(c\mathbf{A})=c^{n}\det(\mathbf{A})\\ \\
4 & \det(\mathbf{A}^{T})=\det(\mathbf{A})\\ \\
5 & \color{#ff7800}\mathbf{A}_{n\times n},\ \mathbf{B}_{n\times n}\\
& \det(\mathbf{AB})=\det(\mathbf{A})\cdot\det(\mathbf{B})\\ \\
6 & \displaystyle\det(\mathbf{A}^{-1})=\frac{1}{\det(\mathbf{A})}
\end{array}}}$$
Свойства определителя матрицы
Свойства детерминанта