28 из 32
$$\large{\displaylines{\normalsize {\color{#ff7800}{P_{n; \ k_1,k_2,\ldots,k_m}={\binom {n}{k_{1},k_{2},\ldots,k_{m}}}}} \\ \\ {\frac {n!}{k_{1}!k_{2}!\ldots k_{m}!}}}}$$

Число перестановок c повторениями

Мультиномиальный коэффициент

  1. Дано мультимножество $\{a_{1}^{k_1}, a_{2}^{k_2}, \ldots, a_{i}^{k_m} \}$ из $(n=k_{1}+k_{2}+\ldots +k_{m})$ элементов
  2. Число перестановок без повторений для каждого набора элементов мультимножества равно $k_{1}!,k_{2}!,\ldots,k_{m}!$
  3. По правилу умножения, число перестановок без повторений для $n$-элементного множества равно $n!=x \cdot k_{1}! \cdot k_{2}! \cdot \ldots \cdot k_{m}!$, где $x$ — число перестановок с повторениями
  1. Что это такое?
  2. О проекте
  3. Вопросы и ответы
  4. Контакты
  1. Образовательные курсы
  2. Простая математика (6)
  3. Основы математического анализа (4)
  4. Основы линейной алгебры (4)
  5. Базовые навыки работы в Excel (1)
  1. © crocodata 2023–2024