1 из 1
$$\large{\displaylines{\color{#ff7800}\sum_{n=1}^{\infty}a_n\\ \color{#ff7800}\exists N\ \forall n > N:\\ \normalsize\lim_{n\to\infty}\sqrt[n]{|a_n|} < 1\Rightarrow\exists\lim_{n\to\infty}\sum_{i=1}^{n}|a_i|\\ \normalsize \lim_{n\to\infty}\sqrt[n]{|a_n|} > 1\Rightarrow\nexists\lim_{n\to\infty}\sum_{i=1}^{n}|a_i|}}$$

Радикальный признак Коши

Для положительного и знакопеременного рядов

  1. Если существует предел модуля корня $n$-ой степени из общего члена ряда, равный $r$, то
  2. При $r < 1$ ряд сходится абсолютно
  3. При $r > 1$ знакопеременный ряд абсолютно не сходится, положительный ряд расходится
  4. При $r=1$ сходимость неизвестна
  5. Применяется для рядов с общим членом, содержащим выражение в степени, которая зависит от $n$
  1. Что это такое?
  2. О проекте
  3. Вопросы и ответы
  4. Контакты
  1. Образовательные курсы
  2. Простая математика (6)
  3. Основы математического анализа (4)
  4. Основы линейной алгебры (4)
  5. Базовые навыки работы в Excel (1)
  1. © crocodata 2023–2024