1 из 1
$$\large{\displaylines{\lim_{n\to\infty}a_n=l_a\quad\lim_{n\to\infty}b_n=l_b\\ \Downarrow\\ \color{#ff7800}\lim_{n\to\infty}\frac{a_n}{b_n}=\frac{l_a}{l_b}\\ \\l_b,b_n\neq 0\ \forall n\in\mathbb{N}}}$$

Предел отношения числовых последовательностей

Частное, отношение пределов

  1. Предел отношения последовательностей есть отношение их пределов, если они существуют и последовательность в знаменателе не является бесконечно малой
  2. $$\lim_{n\to\infty}\frac{a_n}{b_n}=\frac{\displaystyle{\lim_{n\to\infty}a_n}}{\displaystyle{\lim_{n\to\infty}b_n}}$$
  3. $$\lim_{n\to\infty}b_n,b_n\neq 0\ \forall n\in\mathbb{N}$$
  1. Что это такое?
  2. О проекте
  3. Вопросы и ответы
  4. Контакты
  1. Образовательные курсы
  2. Простая математика (6)
  3. Основы математического анализа (4)
  4. Основы линейной алгебры (4)
  5. Базовые навыки работы в Excel (1)
  1. © crocodata 2023–2024