4 из 4
$$\large{\displaylines{\sqrt[]{4\cdot16}=\sqrt[]{64}=\color{#ff7800}\pm8 \\ \sqrt[]{4}\cdot\sqrt[]{16}=(\pm2)\cdot(\pm4)=\color{#ff7800}\pm8 \\ \\ \sqrt[]{\frac{16}{4}}=\sqrt[]{4}=\color{#ff7800}\pm2 \\ \frac{\sqrt[]{16}}{\sqrt[]{4}}=\frac{\pm4}{\pm2}=\color{#ff7800}\pm2}}$$

Дистрибутивность извлечения корня относительно умножения и деления

Корень из произведения и корень из частного

  1. Извлечение корня из произведения чисел равно произведению корней с этими числами в подкоренном выражении и исходным показателем
  2. $$\sqrt[n]{b \cdot c} = \sqrt[n]{b} \cdot \sqrt[n]{c}$$
  3. Извлечение корня из частного равно частному корней с числителем и знаменателем в подкоренном выражении и исходным показателем
  4. $$\sqrt[n]{\frac{b}{c}} = \frac{\sqrt[n]{b}}{\sqrt[n]{c}}, \ c \neq 0$$
  1. Что это такое?
  2. О проекте
  3. Вопросы и ответы
  4. Контакты
  1. Образовательные курсы
  2. Простая математика (6)
  3. Основы математического анализа (4)
  4. Основы линейной алгебры (4)
  5. Базовые навыки работы в Excel (1)
  1. © crocodata 2023–2024